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The entropy of 'strange' billiards inside n-simplexes 

Thomas Schiirmannt and Ingo Hoffmannt 
t Depamnent of Theoretical Physics, Univenity of Wuppertal, Genany 
t Depamnent of Chemical Engineering, Univmity of Dortmund. Germany 

Reeeived 23 January 1995 

Abstract In the present work we investigate a new rype of billiards defined inside n-simplex 
regions. We dewmine an invariant ergodic (sm) measure of the dynamics for any dimension. 
In using symbolic dynamics. the (KS or metric) entropy is computed and we find that the system 
is chaotic for all cases n z 2. 

1. Introduction 

Let Q be a bounded region in 1" with piece-wise smooth boundary (n > 2). A billiard in 
Q is a dynamical system generated by the uniform linear motion of a material point inside 
Q with a constant velocity, and with reflection at the boundary such that the tangential 
component of the velocity remains constant and the normal component changes sign [l]. 
The phase space of a billiard consists of all possible pairs (q. v), where q E Q and v is 
the velocity vector, i.e. an element of the unit sphere in n-dimensional space. Let M be 
the set of the points x = (q,v) and Fr : M --f M the flow on M. This dynamics is 
most conveniently replaced by a map G, : aM + aM, which maps (q,, E aQ, v,) onto 
(q.+t E aQ, vn+l). Here, qn is on the boundary of Q and U, is the velocity before the 
point hits the boundary, while vn+1 is the velocity after reflection and qn+I the next point 
where the boundary is hit. 

Several statements are proved about billiards moving in various geometries [I ,  21. For 
example, the entropy of billiards inside n-dimensional polyhedrons is zero, while some other 
billiards are among the simplest Hamiltonian systems proven to be ergodic and mixing. Thus 
the investigations of billiards are interesting from the dynamical-system point of view. Also, 
a number of other physical problems can be reduced to the study of billiards. 

In the present work we investigate a new type of dynamical systems, so-called 'strange' 
billiards, moving in n-simplex regions. They are similar to the billiards discussed above, but 
the reflection rule at the boundary is substituted by a 'strange' rule defined in the following 
section. Although the dynamics will seem somewhat artificial, there are several relations to 
hybrid d y m i c d s y s t e m s  recently investigated in modelling chemical manufacturing [3, 41. 

In section 3 we determine the invariant ergodic measure (also called SRB measure) of the 
dynamics for any dimension. In contrast to ordinary physical billiards, which are invertible 
Hamiltonian systems, the invariant measure of the presented billiard is not invertible. This 
compares to linear one-dimensional maps with two (or more) branches, e.g. tent maps or 
Bernoulli maps. 

Further, a generating partition is considered and we find that its corresponding symbolic 
dynamics is ergodic. We determine the (KS or 'metric') entropy which is positive for all 
cases n > 2. Finally the topological entropy is derived. 

0305.(470/95/175033+$l9.50 @ 1995 IOP Publishing Lid 5033 



5034 

2. Dynamics of 'strange' billiards 

As mentioned in the introduction, 'strange' billiards are defined as special standard billiards 
where the reflection rule is substituted by a 'strange' rule. For the definition, let S, be the 
standard n-simplex embedded in W" 
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Further, we denote by Sk,n-~ the kth face of the boundary of S.. They are (n - I)-simplexes 

(2) 

Note that the boundary of S, is just the union as,, = 
As long as I is not on the boundary of S,,, the dynamics is as in the ordinaq billiard: 

(I,w) -+ (z+  v t , ~ ) .  But, in contrast, the reflection at the boundary is not specular. 
Instead, for each face &."-I there is a fixed velocity vk under which the trajectory leaves 
the face, independently of the direction of the incident velocity. Furthermore, we assume 
that these velocities are not independent, in particular vk = er - p where ek is the kth 
canonical unit vector in R" and p an element of the interior of S,. Note that the dynamics 
is completely defined by the choice of p .  

A realization of this model is a set of n containers served by a single server. The content 
x ;  in the ith container decreases by a rate p ; .  while the server can refill with unit rate. To 
start with, E;, xi = 1 and the server is in position io. It remains there filling container 
io until another container becomes empty. At this time the Server switches instantaneously 
and remains in the new position until the next container is emptied, and so on [3]. 

For the definition of a symbolic dynamics, we first consider 'Poincare' sections by 
restriction of the trajectory to the boundary of S,. Therefore let us denote by tm the time 
where the trajectory z(t) strikes the boundary as, at the mth times. The time interval 
Arm = imtl - tm between two successive hits of the boundary at z(t,) and z(tmtl) is 
determined uniquely from z(tm). Precisely, suppose that the trajectory hits at time fm the 
kth face, i.e. z&) E S~. , - I ,  then Arm is determined by simple geometrical arguments and is 

= ( z ~ R " l  xk =0, z E S.} fork = I ,..., n. 
Si..-, of the faces. 

f i  

Then we formally write the Poincark map by 

r(fm+l) 5 G(%(tm)) = ~ ( f , )  + (et - P) Atm (4) 

where ex corresponds to the face Sk,n-~ struck at time tm. 

corner. It is defined byt 
Of special interest are the points dk E &.a-] from which the trajectory hits the opposite 

e k = 6 + ( e k - p ) o r  a e P  (5) 

(dk,er) = o .  (6) 

and 

This gives (pk - 1) 01 + 1 = 0, and thus 

t ( , } denotes the canonical scalar product in Rn 
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X !r 
Figure 1. IUuslration of the stse 
spice of a ‘strange’ billiard inside 
a 3-simplex. The spreading of 
nearby lrajectories is presented by the 
grey area The transition point p 
parametrizes the dynamics G .  

i.e. 

We have thus proven the following lemma. 

Lemma 2.1. Let dk E &,,,-I be defined by equation (8). It follows that 

(9) 
G 

dk ++ ek 

and the time step associated with this map is At = CY, where (Y is given by equation (7). 

We note that the trajectories starting with a point z E &,n-!, see equation (4). are always 
parallel to the line between dk and ex through the point p. because of the same directional 
vector of the trajectory. 

Finally let us define a symbolic dynamics. Each time r,,, when a face S*,”-l is hit by 
the particle we write down the index w, of the actual face. Then any point I which gives 
rise to a trajectory with =(to) = I and z(f,,,) E Sum,n-t is coded by an infinite sequence 

U = (WO, W l , .  . .) wk E [ 1, .  . . , n ] .  (10) 
The dynamics on the space of sequences is indeed defined by the the ordinary shift 
transformation W’ = U@), where 0; = Wk+I. For the computation of the entropy of G one 
can equivalently determine the entropy of the shift U if the partition is generating 161. 

In the following section we first determine an invariant ergodic measure of the map G. 
Further, we show that the partition beyond the transformation U is generating and that U 

represents an ergodic Markov shift. The entropy of the map G is then straightforwardly 
determined by computing the entropy corresponding to the Markov measure. 

3. Determining invariant measures and entropies 

For what follows we give here a short repetition of the theoretical framework about measures, 
probabilities and ergodicity. We consider the invariant set as,. For each measurable subset 
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5 of as., the symbol A ( B )  = J8dA(z) denotes the Lebesgue measure of B .  We look 
for an invariant probability measure which is absolutely continuous with respect to A, and 
for its density p. In  nonlinear dynamics a Adensity p is called an invariant probability 
density function w.r.t. the dynamics of the system. In view of the natural given partition 
P = [Si,"-] I i = 1 , .  , . , n )  of as., we consider the special subsets Si.n-l. They are disjoint, 
apart from their edges which have measure zero. The measure of subsimplex i can be 
expressed as 
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A(S;."-i)= 1 ~ ( x )  dA(r) .  (11) 
$..-I 

The probability density function p(z) is called to be invariant w.1.t. the map G, if 

h (G-?B)) = A (5) (12) 

for all 5 g as,. Suppose that the invariant probability density function p cannot be written 
as the superposition p = 01pi + ( I  - 01)pz with 0 -= 01 c 1, p ]  # pz. Then p is called 
indecomposable or ergodic. Regardless of the initial probability density function, provided 
it was absolute continuous w.1.t. Lebesgue, the system will asymptotically be described by 
the invariant probability density function p'. 

Now let us construct the Frobenius-Perron operator and determine the invariant 
probability density function p* on as,. By IA(x) we denote the characteristic (or indicator) 
function for a set A simply defined by 

Then we consider the ansatz of a piecewise constant density 

For the particular sets &,"-I ,  k = 1, .  . . , n. we find by the above definition 

h(Sk,n-~)  = Pk,n-I  A(sk.n-1) (15) 

and 

A($,,,-l) pk.n-1 A(&-i). (16) 

Here, A(A) denotes the Lebesgue measure of set A in dimension (n - 2) and is 
the subset of which is mapped under G to St..-l. see figure I .  Note that G-' is not 
a single-valued map. Invariance of the measure h requires then a fixed-point equation for 
the densities: 

Lemma 3.1. In the above constructed state space and under the mentioned assumptions it is 
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and SL,n.,.-, have in common an entire (n - 3)-dimensional 
We call this face Sk;i..-z. 

Proof: The simplexes 
subsimplex, namely the face opposing the comer dk of 
Therefore, we have 

where 

dist(o, A )  = min{lz - yI : y E A ) .  (20) 

The vectors dk - y1 and et - yz (where y] and yz minimize the denumerator and 
denominator in equation (19), respectively) are both in the linear space spanned by 
and perpendicular to Sk:i.n-2.  They are thus parallel vectors, and the ratio of their lengths 
is equal to the ratio of any one of their components. Taking in particular the lth component 
(for which (yl)~ = (y2)j = 0 and (ej)r = l), we find equation (18). 

With lemma 3.1 and equation (17) we get immediately the following theorem. 

Theorem 3.1. Any measure 1 which has constant density &,,,-I on each subsimplex &-I 
evolves under the application of the map G according to 

Note that by using pi = 1 and the fact that p is in the interior of S,,, one easily 
verifies the identity x b l ( d t ) l  = 1 for I = 1, . . . , n, proving that the matrix pik = (&)i is 
indeed a stochastic matrix. 

The following theorem yields a fixed point of equation (21). 

Theorem 3.2. The piece-wise constant measure 

(22) 
1 

h*(Si,,-l) = ;pi (1 - p i )  i = I , .  . . , n 

is a properly normalized probability measure and invariant under G. 

Proof: By straightforward computation. For n = 3, this has been derived already in [3]. 

Indeed the above measure is absolutely continuous and also unique due to the Perron- 
Frobenius theorem [7]. Such measures are called SRB measures. Its corresponding density 
is given by relations (15), (16). Finally, we state our main result. 

Theorem 3.3. Let G : as, -+ as, be defined by equation (4). Let also the dynamics be 
determined by the point p. Then the entropy h, correspondina to the map G is 

with 

i= l  
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Proof: Let us consider the finite partition P = {&“-I 1 i = 1 I . .  . , n )  of as,,. Since the 
boundaries aSi,2,-, of its elements are invariant w.r.t. the map G, i.e. the boundaries of 
the subsets Si.n-, cannot be mapped in interiors, the partition P is a Markov partition 151. 
Markov partitions for which all intersections nG(sj,n-l) and rIG-’(Sj,n-l)  are 
connected are generating partitions 161. This is indeed the case for the above system. Also 
our partition has the generating property. The symbolic dynamics U (cf section 2) is thus 
equivalent to a discretetime Markov process, i.e. the probability of hitting face &-I at 
time tm is only dependent on the preceding face hit at t,,,-l. 

For the complete statistical characterization of the system, let pi = pi (1 - p i ) / d ,  
i = 1,. . . , n, be the weight of the ith subsimplex, The (conditional) transition probabilities 
for transitions j -+ i are given by the matrix pi, = (dj);. The shift U on the space 
of sequences is a measure-preserving transformation for the Markov measure defined by 
pi] and initial vector p j ,  satisfying pi = cj pij p j .  Also the transformation U is ergodic 
because the chain is irreducible, i.e. for all pairs of states i, j ,  there exists an m > 0 with 
pjy’ > 0 (e.g. m = 2). Since the entropy of an ergodic Markov shift is [6] 
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by inserting the above measures and doing some algebraic simplifications we get 
equation (24). 

Hence for n > 2 we get positive entropy. Since all transitions i + j with i # j are 
allowed, while i -+ i is forbidden, the topological entropy is h,, = log(n - 1). 

4. Summary and outlook 

Inspired by hybrid dynamical systems recently investigated in modelling chemical 
manufacturing, we introduced dynamical systems on n-simplex geometries, generalizing 
thereby the results obtained in [3] to arbitrary n. 

By the use of generating partitions it was possible to define symbolic Markov dynamics. 
Due to the ergodicity of the corresponding Markov shift U it was possible to compute the 
metric entropy with help of the underlying SRB measure. 

In the considered system the velocities 1 ) ~  = ea - p of the particle are not independent, 
but wx - w( = ek - e,. One might ask what happens in the more general case where the 
velocities still depend only on the index k of the hit boundary simplex, but where they 
are not restricted by this constraint. By the Perron-Frobenius theorem there also exists an 
unique probability measure but its algebraic expression is not as simple as in the case above, 
especially for larger values of n.  

A further class of dynamical systems is obtained by choosing the velocities not only 
dependent on the faces at the actual ‘reflection’, as in the present work, but also depending 
on the particular position where the trajectory hits the boundary [8]. 

In such systems one also observes simplex-like invariant sets with singularities but their 
dynamical properties are quite different. In IS] we will introduce briefly the generalized 
dynamical systems and will also discuss possible applications to chemical, bio-technological 
manufacturing and socio-economical systems. 
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